Планковская длина и планковское время

Квантование пространства и планковская длина

В середине XX века гипотеза о квантовании пространства-времени[20] на пути объединения квантовой механики и общей теории относительности привела к предположению о том, что существуют ячейки пространства-времени с минимально возможной длиной, равной . Согласно этой гипотезе, степень влияния квантования пространства на проходящий свет зависит от размеров ячейки. Для исследования необходимо интенсивное излучение, прошедшее как можно большее расстояние. Поток электромагнитного излучения (фотонов) от точечных объектов (звезд,галактик), прежде чем добраться до наблюдателя, должен многократно «преодолеть» масштаб планковского времени, в результате чего его скорость будет слегка меняться, так что изображение объекта окажется искаженным. И чем дальше расположен объект, тем больше таких искажений, обусловленных «ячеистой» природой пространства и времени, накопится к тому моменту, когда его свет достигнет земного наблюдателя. Этот эффект приведет к «размазыванию» изображения объекта. В настоящее время группа учёных воспользовалась данными съёмки GRB 041219A, осуществлённой с европейского космического телескопа . Гамма-всплеск GRB 041219A вошёл в 1 % самых ярких гамма-всплесков за весь период наблюдения, а расстояние до его источника составляет не менее 300 миллионов световых лет. Наблюдение «Интеграла» позволило ограничить сверху размер ячейки на несколько порядков точнее, чем все предыдущие опыты такого плана. Анализ данных показал, что если зернистость пространства вообще существует, то она должна быть на уровне 10 метра или меньше. Выяснилось, что «размазывания» изображений объектов не удается обнаружить вообще. Изображения объектов оказались совершенно резкими. По мнению ученых, это противоречит гипотезе о квантовой природе пространства-времени в микромасштабах. Возможно, нечетких изображений удаленных объектов и вовсе не должно быть. О полной дискредитации теории квантования пространства и времени говорить еще, конечно, рано. У теоретиков в запасе есть, по меньшей мере, два варианта объяснения странного факта. Первый вариант исходит из того, что на микроуровне — в планковском масштабе — пространство и время варьируются одновременно друг с другом, так, что скорость распространения фотонов при этом не меняется. Второе объяснение предполагает, что неоднородности скорости определяются не планковской длиной, а ее квадратом (порядка см), так что эти неоднородности становятся неизмеримо малыми. Второй вариант согласуется с разделами 1-3 настоящей статьи.

Видео

Планковская длина и евклидова геометрия [ править ]

Планковская длина — это длина, на которой квантовые нулевые колебания гравитационного поля полностью искажают евклидову геометрию . Гравитационное поле совершает нулевые колебания, и связанная с ним геометрия также колеблется. Отношение длины окружности к радиусу колеблется около евклидова значения. Чем меньше масштаб, тем больше отклонения от евклидовой геометрии. Оценим порядок длины волны нулевых гравитационных колебаний, при которой геометрия становится совершенно непохожей на геометрию Евклида. Степень отклонения геометрии от евклидовой геометрии в гравитационном поле определяется отношением гравитационного потенциала и квадратом скорости света : . Когда, геометрия близка к геометрии Евклида; для , все сходства исчезают. Энергия колебания шкалы равна (где — порядок частоты колебаний). Гравитационный потенциал , созданный массой , при этом длина , где есть постоянная всемирного тяготения . Вместо , мы должны подставить массу, которая, согласно формуле Эйнштейна , соответствует энергии (где ). Получаем . Разделив это выражение на , получаем величину отклонения . Приравнивание[15], мы находим длину, на которой евклидова геометрия полностью искажается. Она равна планковской длине . [15]

Как отмечалось в Редже (1958), «для области пространства-времени с размерами неопределенность символов Кристоффеля должна быть порядка , а неопределенность метрического тензора — порядка . Если — макроскопическая длина, квантовые ограничения фантастически малы и им можно пренебречь даже в атомных масштабах. Если значение сравнимо с , то поддержание прежнего (обычного) представления о пространстве становится все труднее и влияние микрокривизны становится очевидным ». [16] Предположительно это может означать, что пространство-время становится квантовой пеной в масштабе Планка. [17]

Планковская эпоха

С именем Планка связаны многие величины и законы. В частности, физическая космология называет его именем эпоху самого раннего периода истории наблюдаемой нами Вселенной. Этот непродолжительный период, по теоретическим предположениям, продолжался в течение планковского времени, имеющего значение от 0 до 10-43секунд. В эту эпоху – около 13,8 млрд. лет назад – всё вещество Вселенной обладало энергией порядка 1019 ГэВ и было сосредоточено в одной точке. Радиус этой точки имел значение ~10−35 м, плотность ~1097 кг/м3, а температура ~1032 К. Поскольку размеры Вселенной были исключительно малы, случилось преобладание квантовых эффектов гравитации над физическими взаимодействиями. Невероятные значения температуры и плотности делали вещество неустойчивым. Произошло нарушение симметрии, что привело к проявлению фундаментальных сил – гравитационное воздействие отделилось от других фундаментальных взаимодействий.

Планковские чёрные дыры

Этот тип чёрной дыры пока гипотетичен, но если они существуют, минимальная масса их должна быть равна планковской массе. Этот объект соответствует предполагаемому максимону, частице с такой же массой. Вероятно, что эта гипотетическая чёрная дыра – конечный продукт жизни обычной чёрной дыры. Она должна быть стабильна и не иметь излучения Хокинга. Плотность такого объекта будет выражаться значением порядка 1094 кг/м3 . Такие масштабы физики станет описывать квантовая гравитация, если учёные смогут разработать надлежащие теории.

На границе XX и XXI веков началась революция перехода метрологии в квантовую стадию. Она не в полном объёме основана на планковской системе, но всё-таки стоит на её фундаменте. Именно планковские единицы являются определяющими для применения современных физических теорий. Вдумываясь в значения планковских величин, невольно пытаешься представить эти невероятные массы и расстояния, плотности и время. Это очень сложно, практически нереально, но желание проникнуть в тайны природы всегда озаряло человеческую мысль…

Теги

Adblock
detector