Первые галактики во Вселенной, образование Галактик

Формирование

С чего начинается эволюция галактики? Вселенская материя появилась 13.8 миллиардов лет назад в момент Большого Взрыва. В тот временной отрезок она была настолько упакована и сжата, что представляла собою небольшой шар с неисчислимой плотностью и интенсивным теплом – сингулярность. Внезапно запустился процесс расширения, и сингулярность стала увеличивать свои «границы».

Эволюция галактик на примере тысячи фотографий, сд

Эволюция галактик на примере тысячи фотографий, сделанных космическим телескопом Хаббл. Нажмите на изображение, чтобы его увеличить

Чем больше Вселенная расширялась, тем сильнее остывала. Поэтому у материи появилась возможность распределиться практически равномерно. Дальше гравитация стала притягивать плотные области, накапливая газовые облака и большие скопления, которые и стали древними галактиками (родились первые звезды). Некоторые из них были маленькими и трансформировались в карликовые галактики, другие (покрупнее) – спиральные.

Видео

Млечный путь

Солнце обращается вокруг центра вполне рядовой спиральной галактики, в состав которой входят 200−400 миллиардов звезд. Ее диаметр приблизительно равен 28 килопарсекам (чуть больше 90 световых лет). Радиус солнечной внутригалактической орбиты — 8,5 килопарсек (так что наше светило смещено к внешнему краю галактического диска), время полного оборота вокруг центра Галактики — примерно 250 миллионов лет.

Балдж Млечного Пути имеет эллипсовидную форму и наделен баром, который обнаружили совсем недавно. В центре балджа находится компактное ядро, заполненное звездами различного возраста — от нескольких миллионов лет до миллиарда и старше. Внутри ядра за плотными пылевыми облаками скрывается достаточно скромная по галактическим стандартам черная дыра — всего лишь 3,7 миллиона солнечных масс.

Наша Галактика может похвастаться двойным звездным диском. На долю внутреннего диска, который имеет по вертикали не более 500 парсек, приходится 95% звезд дисковой зоны, в том числе все молодые яркие звезды. Его охватывает внешний диск толщиной в полторы тысячи парсек, где обитают звезды постарше. Газовый (точнее, газо-пылевой) диск Млечного Пути имеет в толщину не менее 3,5 килопарсек. Четыре спиральных рукава диска представляют собой области повышенной плотности газо-пылевой среды и содержат большинство самых массивных звезд.

Диаметр гало Млечного Пути не менее, чем вдвое больше диаметра диска. Там обнаружено порядка 150 глобулярных кластеров, причем, скорее всего, еще с полсотни пока не открыты. Возраст старейших кластеров превышает 13 миллиардов лет. Гало заполнено темной материей, имеющей комковатую структуру.

До недавнего времени полагали, что гало почти шарообразно, однако, по последним данным, оно может быть значительно приплюснуто. Общая масса Галактики может составлять до 3 триллионов солнечных масс, причем на долю темной материи приходится 90−95%. Масса звезд Млечного Пути оценивается в 90−100 миллиардов масс Солнца.

Эллиптическая галактика, как и следует из ее названия, имеет форму эллипсоида. Она не вращается как целое и потому не обладает осевой симметрией. Ее звезды, которые в основном имеют сравнительно небольшую массу и солидный возраст, обращаются вокруг галактического центра в разных плоскостях и иногда не по отдельности, а сильно вытянутыми цепочками.

Новые светила в эллиптических галактиках загораются редко в связи с дефицитом исходного сырья — молекулярного водорода.

Подобно людям, галактики объединяются в групп

Подобно людям, галактики объединяются в группы. Наша Местная группа включает две самые крупные галактики в окрестностях размером порядка 3 мегапарсек — Млечный путь и Андромеду (M31), галактику Треугольника, а также их спутники — Большое и Малое Магеллановы облака, карликовые галактики в Большом Псе, Пегасе, Киле, Секстанте, Фениксе, и еще множество других — всего числом около полусотни. Местная группа в свою очередь является членом местного сверхскопления Девы.

Как самые крупные, так и самые мелкие галактики относятся к эллиптическому типу. Общая доля его представителей в галактическом населении Вселенной всего около 20%. Эти галактики (возможно, за исключением самых мелких и тусклых) также скрывают в своих центральных зонах сверхмассивные черные дыры. Эллиптические галактики имеют и гало, но не столь четкие, как у дисковидных.

Все прочие галактики считаются иррегулярными. Они содержат много пыли и газа и активно порождают молодые звезды. На умеренных расстояниях от Млечного Пути таких галактик немного, всего-то 3%.

Однако среди объектов с большим красным смещением, чей свет был испущен не позже, чем через 3 млрд лет после Большого взрыва, их доля резко возрастает. Судя по всему, все звездные системы первого поколения были невелики и обладали неправильными очертаниями, а крупные дисковидные и эллиптические галактики возникли гораздо позже.

Развитие и эволюция галактик

Проще говоря, рост и слияние галактик это и есть эволюция. Как известно, под силой тяжести галактики притягиваются друг к другу. Так происходит процесс их объединения. Сейчас нам известны галактические группы, скопления и сверхскопления галактик.

Скопление галактик
Скопление галактик

Вдобавок ко всему, большие галактики поглощают малые. Из этого следует увеличение их массы. Причём галактики приблизительно равного размера сливаются в единое объединение. Из них образуются гигантские эллиптические галактики.

Беспокойная молодость

На этом сложности не заканчиваются. С помощью обсерватории Gaia астрономы нашли прямые доказательства гигантских столкновений в прошлом. Астрономы предполагали, что у Млечного Пути была беспокойная молодость, но Хелмер Коппельман, астроном, ныне работающий в Институте перспективных исследований в Принстоне, использовал данные Gaia, чтобы найти конкретные обломки одного из крупнейших слияний. Во всех направлениях он увидел огромное количество гало-звезд, которые двигались взад и вперед в центре Млечного Пути одним и тем же необычным образом — ключ к тому, что они пришли из одной карликовой галактики. Галактические обломки оказались повсюду. Возможно, половина всех звезд гало (которое простирается на сотни тысяч световых лет во всех направлениях) возникли в результате этого единичного столкновения, которое могло увеличить массу нашей Галактики на 10%. «Для меня это изменило правила игры», — сказал Коппельман. — «Я ожидал много небольших столкновений».

Группа назвала малую галактику, слившуюся с нашей Галактикой, Гайя-Энцелад в честь греческой богини Гайи и ее сына-титана Энцелада. Другая команда из Кембриджского университета независимо предположила наличие такой же малой галактике примерно в то же время, назвав ее «Колбаса Гайя» за ее форму на картах.

Когда Млечный Путь и Гая-Энцелад столкнулись 10 миллиардов лет назад, тонкий диск нашей Галактики, предположительно, получил обширные повреждения. Астрономы спорят, почему наш галактический диск состоит из двух частей: тонкого диска и более толстого балджа, в котором звезды колеблются вверх и вниз, вращаясь вокруг центра Галактики. Исследования, проведенные Ди Маттео, предполагают, что Гайя-Энцелад взорвала большую часть диска, раздувая его во время столкновения. «Первый древний диск сформировался довольно быстро, а потом мы думаем, что Гайя-Энцелад как бы разрушила его», — сказал Коппельман.

Намеки на неизвестные ранее слияния с нашей галактикой были замечены в связках звезд, известных как шаровые скопления. Дидерик Крюйссен, астроном из Гейдельбергского университета в Германии, использовал моделирование населения галактик, чтобы обучить нейронную сеть исследовать шаровые скопления. Он поставил задачу проанализировать их возраст, состав и орбиты. На основе этих данных нейронная сеть смогла бы реконструировать столкновения, из которых сформировались галактики. Модель для Млечном Пути действительно воспроизвела уже известные события: слияние с Гайя-Энцелад, а также более раннее и более значительное слияние с галактикой, которую группа назвала Кракеном.

В августе группа Крюйссена опубликовала возможную хронологию слияния нашей Галактики (Млечного Пути) и карликовых галактик, которые его сформировали. Они также предположили существование 10 дополнительных столкновений в прошлом, которые, как они надеются, будут подтверждены независимыми наблюдениями. «Мы еще не нашли остальные 10, — сказал Круйссен, — но обязательно найдем».

Все эти предположения привели некоторых астрономов к предположению, что гало Галактики может состоять почти исключительно из звезд-иммигрантов. Модели 60-х и 70-х годов показывали, что большинство звезд гало Млечного Пути должны были образоваться без столкновений. Но поскольку все больше и больше звезд стали идентифицироваться учеными как прибывшие из других галактик, эти модели были подвергнуты сомнениям.

Подсистемы Галактики

В Г. мож­но вы­де­лить цен­траль­ное взду­тие (балдж, утол­ще­ние), про­тя­жён­ную дис­ко­об­раз­ную под­сис­те­му и ок­ру­жаю­щую их га­лак­ти­че­скую ко­ро­ну (га­ло) – эл­лип­со­и­даль­ную под­сис­те­му, объ­ек­ты ко­то­рой кон­цен­три­ру­ют­ся к цен­тру. Эти глав­ные со­став­ляю­щие Г. хо­ро­шо вид­ны на фо­то­гра­фи­ях спи­раль­ных га­лак­тик, на­блю­дае­мых поч­ти «с реб­ра». Диск и балдж Г. мож­но не­по­сред­ст­вен­но уви­деть на изо­бра­же­ни­ях Млеч­но­го Пу­ти в ИК-лу­чах (рис. 1).

Под­сис­те­мы Г. об­ра­зо­ва­ны звёз­да­ми раз­но­го воз­рас­та и хи­мич. со­ста­ва. Как и во всех спи­раль­ных га­лак­ти­ках, в ней име­ют­ся два осн. ти­па звёзд­но­го на­се­ле­ния. К на­се­ле­нию I от­но­сят­ся Солн­це, рас­се­ян­ные звёзд­ные ско­п­ле­ния, звёз­ды спек­траль­ных клас­сов О и В, звёз­ды-сверх­ги­ган­ты, в т. ч. це­феи­ды, а так­же об­ла­ка га­за и пы­ли; все они кон­цен­три­ру­ют­ся к плос­ко­сти Г. Ато­мар­ный во­до­род про­сле­жи­ва­ет­ся до рас­стоя­ний ок. 17 кпк от цен­тра, на кра­ях Г. его слой от­кло­ня­ет­ся до 1 кпк от эк­ва­то­ри­аль­ной плос­ко­сти. При­мер­но до та­ких же рас­стоя­ний про­сти­ра­ет­ся и пло­ская сис­те­ма мо­ло­дых звёзд, тол­щи­на ко­то­рой, как и га­за, ок. 100 пк. Объ­ек­ты на­се­ле­ния II (ша­ро­вые ско­п­ле­ния, пла­не­тар­ные ту­ман­но­сти, звёз­ды ти­па RR Ли­ры, не­ко­то­рые ти­пы звёзд-ги­ган­тов и др.) кон­цен­три­ру­ют­ся к цен­тру Г., об­ра­зуя об­шир­ное эл­лип­сои­даль­ное га­ло. Сфе­рои­даль­ная сис­те­ма на­се­ле­ния II со­сто­ит толь­ко из ста­рых звёзд (воз­раст всех ша­ро­вых ско­п­ле­ний Г. при­мер­но оди­на­ков – 12–13 млрд. лет). Са­мые да­лё­кие ша­ро­вые ско­п­ле­ния на­хо­дят­ся на рас­стоя­ни­ях ок. 100 кпк.

В пло­ской под­сис­те­ме кон­цен­три­ру­ет­ся газ, обо­га­щён­ный тя­жё­лы­ми эле­мен­та­ми (к ним в ас­т­ро­фи­зи­ке от­но­сят все хи­мич. эле­мен­ты тя­же­лее ге­лия), воз­ни­каю­щи­ми в не­драх звёзд при ядер­ных ре­ак­ци­ях. На ко­неч­ных ста­ди­ях эво­лю­ции звёзд, в осн. при взры­вах сверх­но­вых, тя­жё­лые эле­мен­ты по­сту­па­ют в меж­звёзд­ную сре­ду. Об­ра­зо­ва­ние звёзд из это­го обо­га­щён­но­го га­за в дис­ке Г. про­дол­жа­ет­ся и ны­не. Хи­мич. со­став звёзд на­се­ле­ния I в сред­нем бли­зок к сол­неч­но­му, а у звёзд на­се­ле­ния II тя­жё­лых эле­мен­тов в 10–100 раз мень­ше.

Материалы по теме

Звёздное небо, топ фактов о созвездиях Что может быть прекраснее звездного неба? Только лишь звездное небо, на котором вы можете найти самую яркую звезду и отличить созвездие от астеризма. Итак, 10 приятных и полезных фактов о созвездиях. Как планеты солнечной системы получили свои имена Знаете ли вы, что когда-то Уран назывался… Георгом? Это планету открыл Уильям Гершель в 1781 году. Название новому астрономическому телу он дал в честь короля Георга III, поэтому планета стала «Georgium Sidus» (с латыни «Звезда Георга»). Гершель считал, что в будущем это название будет говорить о том, когда именно был открыт Уран, но что-то пошло не так… ТОП-10 фактов про Луну В списках основных целей всех космических программ обязательно есть пункт о Луне, за которым следует пункт о Марсе. Прошло уже более 60 лет с того момента, как на Луну отправился первый аппарат, а мы не слишком далеко продвинулись в ее изучении. И все же в последние годы интерес к единственному спутнику Земли многократно возрос.

Теги

Adblock
detector